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ABSTRACT

N In this paper we present a distributed asynchronous algorithm to form overlapping clus-

ters on a network with a dynamic topology.

Properties of the algorithm are presented. It is shown that the algorithm is essentially a

distributed implementation of a centralized algorithm. Also, bounds on the number of clusters

r!Th formed on a network with N nodes is derived.

The algorithm(DACA) is then compared with another distributed algorithm(DHCA) for

forming overlapping clusters in a dynamic environment. It is shown that in some ways,

DACA is better than DHCA. The major disadvantage of DACA is that it passes more bits

through the network than DHCA. Which algorithm is better depends on the particular imple-

mentation.
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CHAPTER 1

INTRODUCTION

The landmark paper by Kleinrock and Kamoun[1) showed that by clustering nodes-

considering a group of nih level nodes as one n + 11 level node-the length of the routing table

stored at each node would grow as the log of the number of nodes(N) instead of linearly in N.

This reduction in table size is translated into a reduction in system overhead, since these tables

are passed around the network. That paper assumes that the clustering is performed when the

network is built and that each node can be labeled with an ED that will aid in routing. An

example of this labeling is given in Figure 1.1.

t, 4

FIGL-RE 1.1 An example of hierarchical routing for a two-level hierarchy-

In this example if node 1.1.1 has a message for node 2.1.4, the message will first be routed

along the shortest path to supercluster 2, then along the shortest path to cluster 2.1, and finally

along the shortest path to node 2.1.4. This small example shows how hierarchical routing

works and the critical role played by the ID) of a node.
wor9s



Networks currently in the research stage have different characteristics than the networks

assumed in [1], but we would still like to apply hierarchical routing to them. One such net-

work is the Survivable Radio Network: it consists of mobile nodes and broadcast radio link., In

order to implement hierarchical routing. several important issues must be resolved. The two

main issues are how to form and maintain clusters in a rnetwork with a dynamic topology and M

how to use these clusters to route messages in the network. Several papers [21131,[4,5] have

been aimed at resolving these issues. Paper [2] discusses the issue of routing, and [3] addresses to

a lesser extent the issue of clustering. Papers [4] and [5] discuss clustering, but the method of [5]

appears to be slow and not well-defined.

It is the purpose of this paper to present a distributed asynchronous algorithm to form

overlapping clusters in a dynamic environment. The presented algorithm will then be com-

pared with the algorithm of [4].

Chapter 2 presents the algorithm along with some properties. Chapter 3 briefly presents

the alzorithm found in [4], and Chapter 4 compares the two algorithms. Lastly, Chapter 5 is

the conclusion.

__-a

- . . . . . . . . . .
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CHAPTER 2p
DEMAND-ALLEGIANCE CLUSTERING ALGORITHM

2.1 Description of the Algorithm
U

2.1.1 Notation

The notation used throughout the remainder of the paper is as follows.

Q': Q' is the priority index assigned to node i. If Q' =Q J and i > j then Q is considered

greater than Q ' in any comparison at any node in the network. Initially, Q' > 0 for

each node i in the network. For the decentralized implementation, a node i sets Q1 = 0

and tells all nodes within K hops of this news when the node i is no longer a candidate

clusterhead. Each node j within K hops of node i would then set its local copy of Q' =0.

A node j more than K hops from node i does not have a local copy of Q'.

CIP: C is the set of all nodes within p hops of node i.

R: R is the radius in hops of the clusters formed.

S : S is the suppression radius in hops. S+1 is the minimum distance between any two clus-

terheads. We require that R > S.

K: This parameter is used in the decentralized algorithm. Each node has information only

about those nodes within K hops. The exact information is described later.

2.1.2 Centralized Description

The method employed is a decentralized implementation of the following algorithm.

Start with the node i that has the largest Q', and declare node i a clusterhead. Its cluster,

denoted CR, is the set of all nodes within R hops of node i. If there are any nodes not within S

.I hops of node L then pick as the next clusterhead the node j having the largest Q I of all nodes

not in C,5. Again, if there are any nodes not within S hops of a clusterhead, then repeat as

above. When all nodes are within S hops of a clusterhead, the algorithm is complete.

:' : : i T I." - . . " i - . . .i . . - . . ,.. " . L
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2.1.3 Relationship Among R, S and Q.

From the above description, we can make the following statements regarding the parame-

ters used in the algorithm. "

Q' and S determine which nodes are clusterheads.

S determines how many clusters form for a given network. Proposition 2 in Section 2.2

confirms this point.

R and S determine how much the clusters overlap. The reason we require that R ) S is

to eliminate the chance of a node not belonging to a cluster. .j

The distance between any two nodes in the same cluster is no more than 2R hops.

2.1.4 Decentralized Description and Implementation

2.1.4.1 Decentralized Description

The centralized algorithm uses olobal information to make decisions. In a decentralized

implementation, global information is generally not available, so decisions must be made using

only local information. Thus, for the decentralized implementation we assume that there is an

integer K with K ?- S such that each node i has only the following information about other

nodes: the next node along the minimum hop path from node i to each node in C,,-. the length

Sin hops of each such minimum hop path and the Q for each node j in CA--. Also. we assume

"- . that we have reliable communication in finite time between any two neighboring nodes in the

network. This ,s %o -hat control messages sent among the nodes are a tlv ece,:ed b' the

.-. intended node.

The following distributed algorithm is operating on an asynchronous network. However.

we must assume that each node gains the required starting information within a finite amount

of time after it begins gathering it. This is necessary for the algorithm to complete in finite

time. Also, any node thatreceies a control message before it has gained the required startin2

information wil- take the message and processi it until the point where the node checks ;i :,
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should be a clusterhead. The node can become a clusterhead only after it has the required start-

ing information.

The decentralized implementation of the algorithm is as follows. A node i starts its por-

tion of the distributed algorithm when it has the necessary starting information(described

above). Upon starting, a node i checks if it should be a clusterhead by seeing if Qt > Q j for

each node j ;d i in C, . If the above is true, then node i sets Q 0 and sends a message tel-

ling the nodes in CY that it is a clusterhead. Each node p in C7K - Cis, upon receiving the mes-

sage, sets its copy of Q1 = 0, and if the node p is a clusterhead candidate(QP * 0), node p

checks if it should be a clusterhead in the manner previously described. Each node j in C1
s ,

upon receiving the message, takes itself out of consideration by setting Q ' = 0, and node j sets

, its copy of Q' = 0. Node j uses a modified propagation of information protocol(PIFX6] to send

an update message containing QJ = 0 to all nodes in Cx. A node p receiving the update mes-

sage sets its copy of Q 0 = , and if the node p is still participating in the algorithm, it checks if

it should be a clusterhead. The above allows only the nodes S+l hops or more from all cluster-

heads to be clusterhead candidates at a future time. The algorithm continues as above except

Ithat some nodes are no longer in consideration. When all nodes are within S hops of a cluster-

head, the algorithm is complete and all nodes are in at least one cluster.

A more formal description of the algorithm is given in the following sections.

214.2 Messages and Variables Used in the Decentralized Algorithm

Below are the data structures and the messages used in the distributed algorithm. Each

node has its own copy of the data structures, and each node is capable of generating any of the

messages.

IID. This is the node identification: no two nodes have the same ID.

CID.LIST: This is a list of all the clusterheads that are within R hops of the node. Ini-

tially, the list is empty.

pJ

* . ~~.



CID.. This is at clus-terheadlor cluster) 11) in a- CID.l IST " Ome node.

T~ ll&lL) This is the routini,. table at node 1D for cluster CID: 11) is in cluster CID). The

routing tabic conuons the first node along the curr-ent path from node 11) to

each node in C(,-,,. Also, the distance to each node in CJ>;) iS given in the

table. InitiallN., T(ID,*), for any potential clusterhead *contains only the pre-

viouslyv described information for the nodes in C.At the completion of the

algorithm, eac h node ID has one T(lI).CID) for each CID in its CID.LIST.

C.O[ID.C1D,T(JDCID) This is a message that tells other nodes in 'I'(ID.CID) that node CID is a

clusterhead. It is also used to pass the T(II,CID) to neighboring nodes

in T(ID,CID).

Q.U[1D.11C This is a message that tells all nodes in CT'D that Q ~ 0 for the remainder of

the algorithm. Q.LI' I is part of the PIF started by node ID. A node jreceiving,

this message -xould then set its copy of C:Q 0.

I-IC: This is a counter that allows a Q.LI I message to travel only 1K hops from the

message origin. -A node receiving the message checks if 11C < K . If this is

so. then HC is incremnented in the message, and the message is broadcasted to all

neighboring nodes. This is zemodified portion of the PIF.

d" ~v This is the number of hops in Ihe minimum hop path from node ito node

Al :This is a variab le us-ed in 'Tie PIT' protocol -to ,een track of' The received

Q.L"FD'J mea:s T>, i'::ns z1 OvIes o! The sam-:e nmessal.e :i'm

le~ng sent on a link. Initially, k! :: toU r all' node ID's. -After the irst :orYV

of a Q.U[ID.k] mnessage has been bromad caste d. AM I for the remnainder of the

aigorithm.

U(IllA\GF lAG: This is a variable at each node ithat tells the niode %khether an ""at as

been made t the current T(i.CID) during the taie Update r,,rrion 'i he

alrorithni. If any changes hav.e beeni made, then T(1.(711). i_" sent to
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neighboring nodes.

ON: This variable is used as follows. Initially, ON--0. When a node has the previ-

ously described starting information, it starts its part of the distributed algo-K -l

rithm. ON is then set to 1. This variable prevents a node from becoming a

clusterhead before it has the required starting information while allowing a

node to process incoming messages.

All other variables are as defined in Subsection 2.1.1.

2.14.3 Decentralized Implementation

iW The following algorithm operates at each node i in the network. The simultaneous opera-

tion at all nodes yields the desired distributed algorithm.

For CHECK /* This checks if node i should become a /
/* clusterhead. */ ,,

1 IF Q > QJ /* If node i has higher Q */
for all j di e CjK /* than any other node */

THEN /* in C'x , then node i becomes /"

BEGIN
ADD i to CID.LIST /* a clusterhead and tells everyone.*/

BROADCAST C.O(iTTi)]
Q, =0
END

END FOR

IF Node i receives a C.O(j,CID,T(CID)]
BEGIN

Call T BLE.ULPDATE /* Tableupdate takes T(j,CID) ' -
/*and uses it to produce an updated */

/* version of T(i.CID).*/
/* see later description of TABLE.UPDATE *

/* T(LCID), if it was changed during the*,
/*update, is passed to neighboring nodes*'

/*in CCID via the C.O( I message.*/

Add CID from message to CID.LIST /* This keeps track of clusterheads */
/*of clusters to which node i belongs.*/

QCID 0 /* This takes node CIM out of future*/

/*consideration.*/



S.

2 IF i E C'..- If node i is too close to the clusterhoad.'
THEN

BEG1IN, then take self out of future consideration.'
Q' =()

Broadcast Q.U[i,HC= 1] '* Tell all nodes within K hops',
/* that node i is no longer in *

/* consideration.*,
END 

3 ELSF
4 BEGIN

IF Q 0 and ON = I /* If node i is ON and still in consideration -
, TlHEN CHECK /*then, check to see if*,
7 END '* node i sho Id become clusterhead.*

END IF
END IF

IF NODE i receives Q.U[ID,IIC]
D1n  = 0 when algorithm is initialized. *'

BEGIN
Q !L) = 0 '* Take node ID out of future consideration.*'."

IF HC < K and M- = 0 '* If message has traveled less than *
THEN '* K hops and the Q.L[ID,*] message "/

BEGIN * has not been relayed by node i before, then "-
= 1 ,*send message to neighboring nodes. *

HC = HC + 1
BROADCAST Q.L [ID.HC]

END
END IF

IF Q' Oand ON =I '* If node i isstill in *

THEN CHECK * algorithm, then check *
END IF 7* if it should be a clusterhead.

END IF

When this algorithm is complete. each node will know about all clusterneads -ithin R

hors. Also, each node will know the next node along the shortest path to each node in C,.: ,or

each CID in the CID.LIST at node i.

Procedure TABLE.UPDATE, shown below, is the mechanism that finds the shortest paths

between any two nodes in the same cluster. It is similar to the distributed protool used to find

shortest paths in the ARPANET.

PROCEDURE TABLE.UPDATE
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BEGIN
CHANGE.FLAG =0 /* initialize S/

STORE T(CID)
IF this is first reception of T(jCID)

THEN
BEGIN

CH-NGE.FAG 1.
END

FOR each node k
common to T(jCID) and T(iCID)

* BEGUN
IF d(k i) > d(k,j) + 1 /* If current path is longer */

THEN /* than new path, then keep*/
BEGIN /* new path and update */

- /* distance and next node. */
UPDATE entry k
in T(jCID) with
next-node = j
dist - d(kj)+l

CHANGE.FLAG = 1 /* This keeps track of any s/

END I" changes to T(,CID).*/
END IF

END
END FOR

FOR each entry p in T(LCID)
but NOT in T(jCID) such that p E Cc:D

BEGIN /* This is how a node finds out */

PLACE entry(p) in T(j,CID) /* about nodes outside K hops of */
CLANGE.FLAG = 1 /* itself but within R hops. */
END

END FOR
IF CHANGE.FLAG = 1 /" If any changes were made to table,*/

* THEN
BEGIN

TG4CID) - T(jCID) /* then keep modified table, and */
SEND C.O~iCIDT(i.CID)]

to all neighboring nodes that

are in C6D
/*send message so that*,/
/*other nodes in cluster*/
/* get T(4CID). "/

END
r. END IF

END PROCEDURE TABLEUPDATE

" " - -" - - " . . ...- .. . . .. " ir .
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2.2 Properties of the Algorithm

The first question to consider is whether the distributed algorithm using only local intor-

mation yields the same results as the centralized algorithm using global information. L nder a

few mild assumptions, the two algorithms produce the same clusterheads. Proposition 1 verifies

the above.

Proposition 1: Suppose we are given a network with the following asstumptions.

Q. for each node i, does not change as we change K.

S >0

All previously stated assumptions about the network operating conditions hold.

The following statements are then true.

a) Any value of K > S used in the distributed algorithm will yield the same clusterheads

as the centralized algorithm. Furthermore. it does so in finite time.

b) C, " is an upper bound to the number of times a node checks if it should become a clus-

terhead. Also ;C- is a nondecreasing function of K.

PROOF:

Define the j' local maximum as the node that becomes a clusterhead in the j: iteration

of the centralized algorithm. Let m, be the ID of the j-" local maximum. Note that any two

local maxima are separated by at least S-I hops.

Proof of ah

First we show that the two algorithms yield the same clusterheads. The proof of this is

by induction. Then we show that this happens in finite time.

P 1l) nI is a cluster head and no other node in C, is a clusterhead at the completion of the

decenrrahzed algorithm.

•... ......... .. ......................
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pf. Node mi is the global maximum. SO Q t > Q for each node j~m1 in the network.

Any node j in C s  will see that Q " > Q and, as a result, will not become a clusterhead as
r.'

' long as Q"; O. Also, a node i cannot force a node j to set Q J = O unless node i becomes a~..1

clusterhead and node j is in Cis . Combining the last two statements, we find that no node can

force node m 1 to set Q 0' -0. Eventually node m I will start its portion of the distributed

algorithm, see that Q' > Q for each node j in C/x and become a clusterhead. As a result of

node m I becoming a clusterhead, each node j;dm in C5.s will be forced to set Q J =0, thereby

preventing a node j in Cs from becoming a clusterhead.

Now suppose P(j-I) is true: that m ,,mj_- are clusterheads and that no other node in

tjc is a clusterhead at the completion of the decentralized algorithm. We will show that

our statement P(j) is true:

P(j) M M .... m1 are clusterheads, and no other node in U Cs is a clusterhead at the corn-
i-

pletion of the distributed algorithm-

.f. Consider node m, and Cs . The nodes in Cs fall into two categories, those nodes in

T = tc
5.,

and those in T'. Since node m, is the jr local maximum. QnJ > Q' for any node i d m, in

pC.s

Cn f Tc. By our assumption of P(j-l), no node in

T - (m .  m

is a clusterhead at the completion of the algorithm. Also, requiring that d (mi ,m) ) S +1 for

all i j gives us that

From this we conclude that no node in T n C-, can ever be a clusterhead. Eventually each

.node i in Tun Cs, will set Q1 . Node m will wait for this to happen, will then satisfy

the condition Q"J > Q, for all i ;dm, in C s  and become a clusterbiead. Each node i in C~s

......................................
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will then take itself out of future consideration by setting Q = 0. This completes the proof of

P(j). Therefore, by induction, P(j) is true for all j, which implies that the centralized 4nj tue

distributed algorithms yield the same set of clusterheads.

To see that the decentralized algorithm finishes in finite time. consider the following.
There are a finite number of clusters formed in a network with N nodes it is trivially upper

bounded by N, the number of nodes. If each cluster is formed by the decentralized algorithm

in finite time, then the entire algorithm completes in finite time. Each cluster is formed in

finite time by the decentralized algorithm since we have reliable communication in finite time

and all nodes start participating in the algorithm in finite time.

The reason for having K > S is as follows. Suppose K < S. Then two nodes separated

by more than K hops but less than S hops could try to become clusterheads at the same time.

Depending on the delays incurred by messages and the relative staggering of the starting times

at the two nodes, either one or both of the nodes could become a clusterhead. Clearly, the cen-

tralized algorithm would not allow two nodes within S hops to both become clusterheads. So.

we require K > S to prevent the above situation.

Proof of b):

A node i stops checking if it should be a clusterhead if Q' = 0. Node i would have to

check if it should be a clusterhead a maximum of : times before it would set Q 0, either

hv becoming a clusterhead or bv beino within S hors of a clusterhead. This hound :s met for a

node i when QT < Q- for all j in C : and all nodes inl -C i1 do not become ciusterheads.

is a nondecreasing set function of K. This completes the proof of part b and Proposition

".

Proposition 1 not only tells us that the centralized algorithm and the decentralized algo-

rithm with limited information give the same results, it also tells us that looking further ;nto

V- '. ' . . . .- 2 . " "". ": .- " - -. . - -' '
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the network than we can influence(ie. K > S) will not help us. Increasing K cannot decrease

the maximum amount of processing at a node. So, for the remainder of the paper we set

K = S to reduce the number of parameters.

The above simplification also allows us to remove lines 3-7 of the algorithm. The reason-

ing for this is as follows. Any node i in CCRD -CCD receiving the C.O( ] message would have

had no knowledge of node CID previous to the message, and as such, would have never com-

peted with node CID.

Another important characterization of the algorithm is how many clusters form in a net-

work with a given set of parameters. This is important because research[3] suggests that the

optimum number of clusters for a network with N nodes and a one level hierarchy is N 1/2.

This optimum is with respect to minimizing the maximum table size at any node in the net-

work. The table at node i consists of an entry for each node in a cluster with node i and an

entry for each cluster in the network. Proposition 2 provides bounds on the number of cluster-

heads in a network.

Proposition 2: Given a network with N nodes, diameter D, and a value of S, the number of

clusters formed by the algorithm is bounded as follows.

N,.. r D < M 4 N

where [aJ is the largest integer smaller than a, and is the smallest integer larger than a.

PROOF:

If the network is not connected, then each subnetwork operates independently, and the

bounds apply to each subnetwork separately. So without loss of generality, the network is con-

aected.

Given any two clusterheads in a connected network, they are separated by at least S

nodes. Associate -. of the nodes with one clusterhead and the other ["- " with the other clus-
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A
terhead. These twO groups do not overlap since 2 S S. If we have Al clusterhe .ds. there

must be at least Wl 1I+ j)nodes in tile network. Thus -

Between any two clusterheads there are at most 2S nodes. At worst each clusterhead

along the diameter would take up 2S 4I nodes. Thus

[ M > [..

These bounds are loose in general. However given certain networks, these bounds are met.

Figure 2.2.1 shows an example where the upper bound is met, and Figure 2.2.2 shows an exam-

Pie where the lower bound is met.

Using these bounds, we can see that the number of clusters is a function of S,.V and D

only. By monitoring N and D, we can adjust S for each successive running of the algorithm

to try for the optimum.

i -i

- - Head

.m.-

-I-

S = 2,R 3.N 7,.%1 3

FIGURE 2.2.1 This is a network where the upper bound is met.

.o.
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s-Head

S =3,R =3,N =10,D = 10,M -2
FIGURE 2.2.2 This is a network where the lower bound is met.

2.3 Suppression Strategies

The algorithm just presented has the property that a node i, upon becoming a clusterhead,

suppresses all nodes within S hops. Thus regardless of how good a clusterhead a node might

potentially be, it is not allowed to become one if it is too close to another clusterhead.

Another way to suppress nodes is based on an idea presented in [71 Suppose that instead

of arbitrarily having node i force off a node I we first see how different Cs is from Cs for each

j in Cis. If Cs is sufficiently different from Ci , then node j is allowed to participate in the

next iteration.

One way to see how different two clusters are is to calculate

; n c,,:

If a(i,j) is smaller than a threshold, then node j is allowed to participate in the next iteration.

a(i,j) is easily calculated because when node i becomes a clusterhead it sends out a message con-

taining a table of the nodes in Ci.

The presented algorithm is easily modified to incorporate the above idea. If line 2 of the

algorithm is replaced with

~~~~~~~~ ~~~~~~. . . . . ,. . .. . . . . . . .. . . . . . . . . [ . -X , ., ,, . , ,. - , ... .
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IF a(i,j) ) T
p . <

then the algorithm will perform the desired operation. Of course a(i,j) must first be calculated.

2.4 Q Initialization Scrategies

The algorithm presented makes decisions based on the number Q attached to each node.

The only constraints placed on the Q's are that Q > 0 for all j, and that if

*Q =Q' andi > j,thenQ' > Q in line 1 of the algorithm.

The easiest and most obvious way to initialize Q' is simply to let Q = i. This naive

method is biased towards the nodes with higher id numbers and makes no attempt to incor-

porate the local network conditions into the Q's.

A more intellioent way to assion Q's is such that we try to shorten the time the algo-

rithm takes to complete and also try to minimize the average distance from a clusterhead to a

node in the cluster. A function that meets the above requirements is

where

Z - d(i,j)

This choice of Q, favors larger clusters, so more nodes set Q' = 0 when a cluster forms. This

tends to speed up the algorithm. .

Fgure 2.4.1 illustrates the Q initialization for the t-ree networks ased Ls e:amples :n

Chapter 4.

Exactiy how well this scheme performs relative to other schemes depends on the cost

function used. We can get a feel for its performance if we compare this scheme to that of

assigning the Q' s randomly. Randomly assigning the Q's is similar to using Q' = i and allow-

ing the nodes to be anywhere in the network.

, •.

:::::::::::::::::::: ::: :::::::: i:. ::,! i::, :- :.::i: , . .,:: ::;; F : - : -,:, i,, :.i.-ii;:.-:: . :.~. :, ;. ., _ -....\-: i-_ :
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For the purpose of illustration, suppose the cost function is

I =m i n d (i j 1 + F * A I

where j is a clusterhead. F is some finite positive constant and for each i the minimum is taken

over all nodes j in node i's CID.LIST. This cost function is the mean square disance from a

node to its nearest clusterhead -denoted J - plus the cost for M clusterheads.

A graph of d verses M shows that for many choices of F the strategy is good. Figure

2.4.2 is such a graph for the fifty node network of Figure 2.4.1. Note that the random selection

strategy gjves worse results most of the time.

'7

U - Q' initializat:on of Section 2.4

, - Random Q initialization

4--
- ' ,

7- 8 -

"1...........i -
I I I

S5 1 25

FIGURE 2.4.2 This is a graph of J verses Al for DACA. There are 150 data points,
many of which are the same.

" We can visualize our cost for a given F by considering the family of lines with slore -F;

,te cost is the Y intercept. The line with the lowest Y intercert such that the line touches a

[sample pint gives us the minimum cost. Note that for F in either [.45.7S] or [.1 2,17, DACAsa l pn ..:
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with the Q'as defined yields a lower cost than any of the simulation outcomes with random

initialization.

The presented initialization strategy is not as good for highly connected networks as it is

for spai-sley connected networks. To see this suppose that every node is connected to exactly p

other nodes. Then each node will have the same value of Q.When this occurs, our algorithm

behaves the same as when Q' i . This makes the extra computation of Q' unnecessary.

2.5 Maintaining Clusters

There are basically two ways to maintain the cluster structure in a dynamic environ-

ment. The firs is to periodically run a new cycle of the clustering algorithm. The second is to

use a hand off procedure, as in cellular radio, to keep track of nodes as they move from one

cluster to another. The preferred method is probably some combination of the two methods.

This would allow us to handle both short term fluctuations and long term trends.
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DRAFTED-11EAD CLUSTERING ALGORITHMI

3.1 Introduction

This section is a brief description of the algorithm presenited in (41 It is included here for

later comparison to the Demand-AlIleg iance Clustering Alvorithm(DACA .- those seekino

detailed information should consult [-ij.

3.2 Centralized Algorithim Description

The Drafted-Head Clustering Alu;orithm(DIICA)- called the Linked Cluster Algorithm

4 in [4]-- is a distributed implementation of the following algorithm. For simplicity, our net-

work has N nodes, and each node is labeled with a distinct number from j to .

Start with node i labeled N , and declare it a clusterhead. Its cluster, C.-, is the set of all

nodes within R hops of node i. Next, consider the node jlabeled N -1. 1If C!~ contains a node

not in a previous cluster, then, CC remains. This procedure is repeated until ail nodes belong to

at least one cluster.

3.3 Distributed Algorithmn Description

The above implemented as a distributed aloorithm is as followvs. Fach node J has the fol-

low.ing information for each node in C : the nez:- node alon,,, the minimum hop path from

nix~e t o each node in C'. the inh hors o icsc2razn ndi t-e 0 for eULod n~ode

L ach node i searches its table to find th be node withn the largest .\ ode itells that node

I become a clusterhead( ixe, nodes are drafe) Node ithen tell al ,odes %%ithin R hot's hat

iis a custerhead. Once all the clusters are formnet., an-, clusterhead that finds its clusier com-

pletely contained in another cluster deletes itself.

rHl only considers the case where R=-. The alooruh-r has beven generalized he:-e so tnat it

can be _omrared wuth the Demand-Alilei,,ance Cluster Al'orithm(DACA).



21

3.4 Qi Initialization Strategies

S In (41 there is no discussion of how to initialize the Q' 's. It appears that the authors have

chosen Q' i.

Suppose we use the Q' initialization and cost function of Section 2.4. This not only gives

us a way to compare DACA and DHCA. it also gives us a way to see if the QI initialization is

* good for this algorithm. Again, we compare this strategy to that of random asignment of the

Q 's. Figure 3.4.1 shows a graph of J verses M4 for the fifty node network of Figure 4.1.1.

From Figure 3.4.1, we can see that the random labeling does a little better at times and

. does much worse at other times. Thus, for practical purposes the initialization strategy

presented is clearly better.

i 1is

, - Q' initialization of Section 2.4

6- e - Random Q' initialization

2-

a Is 29 2S

FIGURE 3.4.1 This is a graph of J verses M for DHCA.

., . . :2
-.-... .. ,.i
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CHAPTER 4

COMPARISON OF THE DRAFTED-HEAD AND THE DEMAND-ALLEGIANCE

CLUSTERLNG ALGIORITUMS

4.1 Main Differences

The first difference to note is that DHCA makes no attempt to spread clusterheads evenly

throughout the network, while DACA forces clusterheads to be separated by at least S,-r hops.

From this we could expect that DtHCA would tend to form several aggregations of clusterheads

in the network. Figure 4.1.1 shows three outcomes of DHCA, Figure 4.1.2 shows three out-

comes of DACA. and Figure 4.1.3 shows three outcomes of DACA using the suppression stra-

tegy' of Section 2.3. In all cases, the Q is as defined in Section 2.4.

The second difference is that DHCA tends to create more clusterheads than DACA for a

g:ven instance of a network. This is because in DIICA a node i becomes a clusterhead i" it has

the largest Q: in C: for j in C.,- while in DACA a node i becomes a clusterhead if it has the

largest Q: in C,.. at some time. Many of the clusterheads formed by DHCA would be forced

off in DACA. The example in Figure 4.1.4 illustrate this point. Also the results in Section 4.2

confirm this point.

Another consideration is how the two algorithms compare with respect to the cluster cost

function of Sections 2.4 and 3.4. Figure 4.1.5 is a merging of Figures 2.4.1 and 3.4.1. and

corresponds to random Q' initialization for both algorithrns. Note that most o! the poirts

corresponding to DACA lie below those corresponding to DHCA. So. for this given cost func-

ion. DACA is clearly better than DHCA.

The last important consideration is speed of execution. DACA is slower than D[ICA "

mainly because of the increase in communication overhead. How much more communication is

the subject of Section 4.3.

S. . . . .........
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150

-Head

R 3

p~ I3

_~ R=2

FIGURE 4.1.1 Sample outcomes of DHCA using the priority indices Q'defined in Section 2.4
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5

.tIN

4'

I ~ 3 4 4

LS q. 7 I

FRE~.~~ 4i.1.3 Sample outcomes of DACA with modified suppression using the pioriy in-
dices Q'defined in Section 2.4
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to{

DACA S=1,R=l HEADS= 11,8,3 DHCA R=l HEADS= 11,10,.7

FIGURE 4.1.4 Example showing that DHICA tends to form more clusters than DACA

4.2 Bounds on the Probability that a Node is a Clusterhead for a Randomn Network

4.2.1 Model

Section 4.1 shows several examples of networks and the clusterheads generated by each

algorithm. These examples are illustrative, but it is still desirable to have some characterization

for any network. The probability that a node is a clusterhead is the characterization we

j U - DHCA data points

20 - DACA data points

-1 .

s--4

4-i

2-

85 le is 268

FIGURE 4.1.5 A graph of J -erses.V for DHCA and DACA using random .- selection

,4 Bond n

% %V
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consider here.

Let the number of points in the plane be Poisson with parameter X. Let Q' for each node

i in the network be independent of all else and chosen uniformly on [0,11 If two nodes are less

than t units away, where t is the transmission radius, then there is a link between the two

nodes.

4.2.2 Analytical Bounds

Fix a node i and let Z be the event that, at the start of the algorithm, a node i has Q'

greater than QJ for every node j ;d i in CK. Let Cis be all the nodes in the circle of area A

*-", centered on node i(ie., A wr(St )2). P(Z) provides a lower bound for the probability that a

node i is a clusterhead for DHCA.

The probability of the event Z given Q is as follows.

Go

Manipulations yield

P (Z/IQ' )=e I-Q .','

Integrating out the conditioning yields

If CH is the event that a node is a clusterhead, then

~ P(CH) P P(Z.

Fix a node i and let D be the event that, at the start of the algorithm, Q' is smaller than

' Q' for each node j in Cix and that node i is not the only node in CK. The event D allows us to

upper bound as follows the probability that a node is a clusterhead for DHCA, specifically,

Proceeding as before,

~P (D/IQ' )= (-0 i-'e-

Manipulation and removal of the conditioning yields the final result

-- , o i.. . . . .. ° . ° - .°. .° . . . .f . -. . •. .'. . . ° . - - ° .
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P(D )= 1 - ' 1 ) -"

X.4 XA

For DItCA, another wa" to guarantee that a node i is not a clusterhead is to have nodes j

with Q. larger than Q: fall into each of the three shaded regions B of Figure 4.2.2.1. Let the

axve event be E.

The probability that all nodes in B have a smaller Q-' than Q is the same as equation 1

except that B replaces A ,n the expression. Thus,

P(E)= I- XI-C--

where B z.057A.

Putting all the bounds together yields

1 -max (P(D )VP(E P) ) (CH ) > (Z)

- for DICA. Note that the bounds are functions only of the expected number of nodes in a clus-

ter, =

Figure 4.2.2.2 shows the bounds as a function of ,.

4.2.3 Simulation

The bounds given are loose in the range of interest, so we performed a simulation to see if

the upper bound or lower bound ,s tighter. In each simulation run. points were scattered

FIGURE 4.2.2.1 A node j with Q. greater than Q' must fall into each of the shaded regions.

N.

...-..- '.,
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P(CH)

.8-

S- ,.4-I

e9.2-

LOWER BOUND

e.9 -I - I I

• e20 48 as Be fee

FIGURE 4.2.2.2 Bounds on the probability that a node is a clusterhead

uniformly in a unit square and clusterheads were determined according to the appropriate algo-

rithm. In finding data points for large N we were careful to increase X and not A., since

.. increasing A would cause edge effects to alter the results. Figure 4.2.3.1 shows the results of the

simulation. The results conflrm the claim that DHCA tends to form more clusterheads for a

. given S than DACA.

*" 4.2.4 Comments on Bounds

Exactly how these bounds correspond to the algorithms described varies with the parame-

ters of the algorithm. If we are considering DHCA with R-I or DACA with R-1 and S -1.

L then the bounds are good since, in the bound, A - Tit 2, where t is the transmission radius. How-L

ever, if R ; 1 for either algorithm. then it is not generally true that A =7r(Rt )2.

, ** ,i . * ',i:;.,' d, "-- -, ....~ ** *. "- "" . - " " " - "" "
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P(CH)

-. 8-

•- DHCA data points

e" , •- DACA data omts

8.4

8 2 " " a*

.................................... ..................................

0*--T -TT--T--T--r- i i*5

0.8 2.5 5.0 7.5 18.8 12.5 S.

-:(;LR[L 4.2.3.1 Simulation results n the probabrhty tfllt i rode Is a ciusternead

To see why, consider the situation depicted in Figure 4.2.4.1. Nodes a and b are w:th:.

ot each other but are not nnected. Accordin,_ to the bounds, on!y one or tit'e '.o .,,, Q

'b come 3 CIuSterhead. but in reail:' "Ith COUld hemt Justerheaiy. \\ "h .ire .\ .the dr-:

lcted situation occurs .vith probabiitv i. This leads us -, , e:e :. er ' 1 r 1. -1

3r..-//

'\\ i/

K / .

FI(;L RE 4.2.4.1 A situation .vhere bomunds "vould be .naccurate

- .- 7.. -

-? ' ,".-' ,. . .' ..', '. ,' , .. ..'.. .- - . .'.-.- . . ." . ..' " . .-'"" .-.. . ." -.'..". .', " --- -. ' -" .' -. .
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the bounds are realistic for large iV. For DACA and large Yf, A - ir(St )2, and for DHCA

and large )7. A 7r(Rt P.

4.3 Comparison of Communication Costs

[ The previous analysis shows that DACA is better than DHCA in some respects. However,

it is clear that DACA has a higher communication cost than DHCA. We confirm this statement

with the following analysis. Section 4.3.1 establishes an upper bound on the number of bits

transmitted in DACA, and Section 4.3.2 establishes an upper bound on the number of bits

transmitted in DHCA.

4.3.1 Communication Cost for DACA

in DACA., each node i generates one message. M nodes generate a C.O(tT(Wi)] message,

and N -M nodes generate a Q.U[i.HC] message. Each Q.t-i.HC] message contains

log (N) + log (K) bits, and if generated by node i, is transmitted no more than times. So

the cost for all Q.LU I messages passed through the network is bounded as followr

COSIQ.[ ] K, (N -M )m K Iog (N )+Log (K ))bits

The maximum is over all nodes i that are not clusterheads.

Each C.O( ] message generated contains a T(C[D,CID). This table, as it is passed from node

toC&D. contains no more than nCod iI entries. Each entry consists of
1,o condin no m r ha I

2og (N) + log (2R) bits, N bits for the destination. N bits for the next node on the path and

- 2R bits for the distance. Also, 2Log (N) bits are needed to identify from where the message

originated(CID) and from where the message was last relayed(j). At worst, each table would be

transmitted C times. Combining these facts, we find that the total communication cost for

all C.O(i,i,T(i,i)] messages passed through the network is bounded as follows.

COSTC.O( M< M " f (2!og (N )+og (2B ))+2logN bits

The maximum is over all nodes j that are clusterheads.

. "
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"- 4.3.2 Communication Cost for DHCA

Each node i, after finding the node j in C,"' with the largest Q , sends out a message to the

node j that it has chosen as a clusterhead. This message has log (N ) bits and is transmitted at

most R times, since the clusterhead is at most R hops away. At worst, N -1 nodes in the net-

- work would send out such a message. So, an upper bound on the total communication cost for

, all the C.M[] messages passed through the network is bounded as follows.

COST[C.[I( D] (N -1)R log(N ) bits

, Each of the M clusterheads generates a message containing T(CID,CID). The bound for

the number of bits needed for all the tables transmitted is the same as presented in Section

4.3.1, namely,

COSMTC.O D1 <,,,,lrna x C (2 log (N )+log (2R ))+2logN bits.

Again, the maximum is over all nodes j that are clusterheads.

4.3.3 Comparison of Costs

From the above we see that the main difference in communication cost is in finding the

clusterheads and not in passing the tables. In general R < < mx , so the cost of fnding

* the heads in DHCA is less than in DACA.

. .- . .1-i..

. * *. .-.o,. .
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CHAPTER 5

CONCLUSION

In this paper we presented a distributed asynchronous algorithm for forming overlapping

clusters on a network with a dynamic topology. The algorithm's properties were presented, and

* the algorithm was compared to another algorithm designed to perform a similar task. The algo-

* rithm of Chapter 2(DACA) performs better than that of Chapter 4LDHCA) in many ways, yet

the former has a higher communication cost than the latter.

The communication cost a~ important in determining how well these algorithms perform

in a dynamic environment. If the traffic delay is not too large and node mobility is not to high,

then the algorithms should perform well. However, if the traffic delay is large and the node

mobility is high, the clusters may be obsolete by the time they form. This aspect of perfor-

* mance is best analyzed by direct simulation of the desired implementation.
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